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1 Introduction and Background

1.1 General Background

Recommendation systems are personalized information
filtration systems designed to tailor suggestions to each
user [2]. These can be constructed in various ways,
including content-based filtering [6], which compares
liked items with other items in a database according to
their attributes, and collaborative filtering [8], which
takes into account user preference to identify similar
interests. The title of the paper, “Man vs. Machine”,
pertains to the comparison of a user-driven method ver-
sus an attribute-driven method. Both methods yield
results unique to each input. When the same input is
passed through each method, however, the results may
differ based on the approach used.

1.2 Specific Problem

Our study investigates the similarity of recommenda-
tions from content-based filtering and collaborative fil-
tering in music recommendations. In the context of
our study, content-based filtering analyzes song fea-
tures, while collaborative filtering recommends songs
based on how users with similar song interests have in-
teracted with those songs. We hypothesized that the
two models would generate statistically similar recom-
mendations.

2 Motivation and Objective

2.1 Problem Statement

Current implementations of musical recommendation
systems often utilize both filtering forms and have years
of data developed on their songs and users [10]. De-
spite this, music-sharing platforms like Spotify and Ap-
ple Music often face criticism for their recommendation
algorithm. Some of this is simply due to a large popu-
lation of users, making criticism an inevitability. The
general concern of many complaints is that the recom-
mendation systems do not recommend songs appealing
to the user.

Herein lies the complicated nature of a recommenda-
tion system: the representation of quantitative data.
There is no correct answer for a recommended song,
given the variability of music taste and the wide range
of options. Users can like and dislike songs, but that
is not always indicative of their feelings about related
songs. Other users may never interact with song op-
tions but will listen to certain songs on repeat and skip
others. These recommendation systems need to blend
the algorithms for content-based and collaborative fil-
tering without losing the information from each.

2.2 Contribution and Novelty

Given the limitations of previous research and our
dataset, we decided to separate the filtration systems

into two models and compare their results. This is the
initial stages of a large-scale recommendation system,
where input is captured and used to determine a final
recommendation. By separating the two systems, we
get a deeper insight into the role each algorithm plays
in identifying the music to recommend, as we will be
able to directly compare how similar the recommended
songs are.

3 Data Collection and Analysis

3.1 Dataset

Our study uses two Spotify datasets: Spotify Songs
and Spotify Playlists. Spotify Songs is a dataset that
contains nearly 30,000 songs with 23 attributes (in-
cluding topics like danceability and energy), as well as
a dataset of user-created playlists, where each entry in-
cludes four attributes: user id, artist name, track
name, and playlist name [1]. For collaborative fil-
tering, the Songify Playlists database was used. Each
row consisted of a user id, playlist, and added song.
This database maps users to the songs they added to
a playlist [9], and contains of over 10 million user in-
teractions.

3.2 Dataset Introduction and Analysis

Both datasets were downloaded into Python pandas
DataFrames (an open source data analysis Python li-
brary). Text-based attributes were standardized by
stripping spaces and converting them to lowercase. All
attribute names were standardized by removing lead-
ing and trailing spaces and special characters.

Before diving into making sure that the two datasets
have the same songs, a union between the playlist
dataset and the song attribute dataset, we conducted
a data exploration of the song attribute dataset.
We analyzed the numerical attributes by plotting
their values to derive more information about their
spread, which can be seen in Figure 1. The dis-
tributions of track_popularity, danceability, and
valence were relatively normal. The distributions of
energy, loudness, speechiness, acousticness, and
liveness were relatively skewed left or right. The at-
tribute key didn’t have a clear distribution while mode
was bimodal. Keeping these in mind, we moved on to
ensuring a union between the two datasets.
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Figure 1: The spread of the song dataset for each of
the 13 numerical attributes.

Testing for duplicates in the datasets revealed that the
given track_id column was not unique and therefore
not a reliable input feature for our recommendation
system. Therefore, this attribute was removed and a
new unique key was created by concatenating the track
name and artist name for each song, which we called
track_id. Duplicate entries based on track_id were
then dropped, as well as rows with missing data. The
modified datasets were matched up, removing songs
not present in both datasets. The final datasets con-
tained a total of 8,516 unique songs.

The User-Created Playlists dataset was then prepared
for matrix factorization. As discussed in Sec. 4.1, the
dataset needed to be converted into a modified binary
document-term matrix. In this case, each row value
was a unique user_id, and each column value was a
unique track_id. Each entry in the matrix was either
a 0, meaning the user had not added that song to a
playlist, or a 1, indicating they had.

4 Method

Two primary machine learning algorithms were used to
develop the matrix recommendation systems. For the
collaborative filtering, this was the matrix factorization

and singular value decomposition. For the content-
based filtering, the K-Nearest Neighbors algorithm was
used.

The outputted playlists from the two recommendation
systems were compared using three distinct similarity
measures: cosine similarity, Euclidean distance, and
Jaccard similarity.

4.1 Matrix Factorization and Singular
Value Decomposition

Matrix factorization (or decomposition) is used to de-
compose matrices into a product of matrices, allowing
for more efficient matrix algorithms. Singular value
decomposition (SVD) is an eigenvalue-based decom-
position that approximates a matrix into three lower-
dimensional matrices while saving the maximum vari-
ance [3]. Specifically, a truncated SVD was used, which
performs more effectively when using sparse matrices.

The User-Created Playlists matrix was decomposed
into smaller matrices using a truncated SVD, preserv-
ing core components and reducing the dimensionality.
An approximate matrix was reconstructed of the orig-
inal data, using the compressed matrices and reduced
components. During experiment and analysis, a new
user’s playlist would be transformed into the same low-
dimensional space using the compressed original matrix
and preserved components. We then computed the dot
product of this matrix with the core components found
in the original to get a list of new song recommenda-
tions.

4.2 KNN

K-Nearest Neighbors (KNN) is a method that classi-
fies data by mapping the point using its attributes and
classifying the data based on what is nearby. We chose
this method because we wanted a way to find data
points similar to the input data, which would then be
recommendations. Using a KNN allowed us to execute
this task.

In order to use this method, the dataset needed to
be scaled and encoded as the attributes of the data
were both numerical and categorical. Using a standard
scaler and one-hot encoder, the data was preprocessed
and fitted to the KNN utilizing the scikit-learn li-
brary. We used Euclidean as the metric of similarity
between data points with this KNN.

When getting recommendations for a given playlist, it
includes preprocessing the playlist’s songs, averaging
their attributes, and obtaining the closest k songs [4,
5]. In the preprocessing step, we use the same prepro-
cessor to scale and encode the original dataset. After
transforming the data, we average the songs’ values to
obtain a single aggregated vector. This vector is evalu-
ated by the model which allows us to calculate the near-
est neighbors. To ensure that we do not recommend the
same song given in the playlist, we calculate 2r songs,
where r = number of recommendations. With the



distances and indexes outputted by the scikit-learn,
we retrieve the recommendations found by using our
KNN.

4.3 Comparing Distance

Metrics

Outputs:

Our two models’ outputs were directly compared
against each other, so multiple similarity measures
were used to identify the potential closeness of these
recommendations. Cosine similarity measures the an-
gle between two vectors, meaning that similarity is
based on the similarity between the vector orientations
rather than their magnitude. Euclidean distance finds
the straight-line distance between points and calculates
similarity from magnitude. Jaccard similarity, mean-
while, more simply calculated the overlap between sets
of elements; if two playlists do not have any overlap-
ping songs, for example, the Jaccard similarity is zero.

5 Experiment and Discussion

5.1 Experiment

After configuring the two models, KNN and matrix
factorization, we needed to test how similar the recom-
mendations were between both models. We simulated
121 input and output scenarios by selecting a range
of the number of songs, s, in the playlist given to the
models and the number of recommendations, r, out-
putted by the models. It is important to note that
the playlists given to each model were identical to each
other. We used the ranges {1, 5, 10, ..., 50}, separated
by increments of 5, for both parameters.

5.1.1 Similarity Between Recommendation

Systems

The outputs from the matrix factorization and k-
nearest neighbor recommendation methods were com-
pared to each other using four similarity metrics: co-
sine, Euclidean, normalized Euclidean, and Jaccard.

Normalized Euclidean distance was calculated using
min-max normalization. Min-max normalization is
used to scale the Euclidean distance between two fea-
ture vectors so that it falls within the range [0, 1].
This specific normalization process assumes the mini-
mum possible Euclidean distance to be 0 and calculates
the minimum and maximum distances between feature
vector. The raw Euclidean distance is then calculated
using this formula:

raw — min dist

normalized = - —
max dist — min dist

After normalization, 0 means the two feature vectors
are identical, while 1 means they are as different as pos-
sible within the dataset. Normalization ensures com-
parability across feature scaling and across similarity

measures such as cosine similarity, which is bounded
between [—1, 1].

5.2 Discussion

Our results confirm the central hypothesis: KNN and
MF generate statistically similar recommendations.
While the exact songs recommended by each model
greatly differ (low Jaccard similarity), their feature-
based similarity is extremely high (cosine similarity
~ 1.0 and normalized Euclidean distance < 0.1). These
statistics, illustrated by Figure 1, indicate that both
song recommendation methods recommend songs with
nearly identical characteristics.

Stat Fuclidean Cosine Sim. Jaccard
Dist. (Norm) Sim.
count 121 121 121
mean 0.051469 0.999715 0.001269
std 0.045661 0.000502 0.004897
min 0.006610 0.997129 0.000000
max 0.330024 0.999996 0.029412

Table 1: Statistics for similarity metrics

As a secondary result, the researchers were interested
in determining the correlation between computed co-
sine similarity and Euclidean distance measures to de-
cide whether the similarity measures are interchange-
able in the context of this research project or whether
they must be individually analyzed.

Between all 121 tests, the Pearson correlation coeffi-
cient measuring the linear correlation between normal-
ized Euclidean distance and cosine similarity was -0.43
(the correlation between the similarity metrics is neg-
ative because a high cosine similarity corresponds to a
low Euclidean distance, as both are measures of high
similarity). The corresponding p-value to the correla-
tion measure was 0.0000009574; because this value is
much smaller than 0.05, the results rejected the null
hypothesis (that cosine similarity and normalized Eu-
clidean distance are not correlated) and determined
that the correlation is statistically significant.

As Figure 2 illustrates, we determined that the cosine
similarity and normalized Euclidean distance similar-
ity metrics are highly correlated. The correlation be-
tween Jaccard similarity and the other similarity met-
rics, however, is not statistically significant. This result
reveals how the inclusion of song attributes in the simi-
larity computations (cosine, Euclidean) yields more nu-
anced results than a simple set union (Jaccard).
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Figure 2: Heatmap of the correlation between similar-
ity metrics

It is important to consider which similarity metric is
best for the comparison of songs. Cosine similarity is
particularly useful in recommendation systems, where
each item (each song, in this case) can be represented
as a vector of features (each song is represented by its
danceability, acousticness, and more)|[7].

In our initial exploration of the number of songs in the
given playlist, s, and the number of recommendations
requested by the model, r, we concluded that they did
not influence the similarities between the two models.
In the heatmap in Figure 3, we can see different trends
with each similarity metric.

While there isn’t a strong trend in the Euclidean dis-
tance and normalized Euclidean distance heatmaps, we
saw higher values when r and s were both small. This
could indicate that when having a small input playlist
and asking for fewer recommendations, it is less likely
for the two models to produce the same or similar rec-
ommendations. In the cosine similarity heatmap, there
is a clear indication that when r is small, the similarity
between the recommendations from each model is not
as similar as when using a larger value for r. In the
Jaccard similarity heatmap, it is obvious that the rec-
ommendations from each model are not the same exact
songs recommended by the other.

Even though we were unable to draw much from our
initial visualizations, there was a slight indication from
the cosine similarity metric that when r is smaller the
models tend to not be as similar in comparison to when
r is larger. Following this observation, we constructed
further visualizations to dive deeper into two of these
metrics.
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Figure 3: Heatmap of the ranges of s and r within the
4 similarity metrics.

To further illustrate the calculated normalized Eu-
clidean distance, we plotted this metric against the
number of songs in the given playlist (s) and the out-
put size (r), in Figure 4 and Figure 5 respectively. In
Figure 4, it is clear that there is a leftward skew indicat-
ing that when the number of songs in the input playlist
is relatively smaller, the two models recommendations
are more different than when using an input size of 10-
40 songs. This could be because having fewer songs
to base recommendations on makes the differences in
the inner-workings of both models more apparent. The
bar chart in Figure 5 illustrates a clear leftward skew
describing the relationship between the number of rec-
ommendations and the similarity of the models. In
this visualization, we can explain that when the two
models are requested for fewer recommendations, the
songs that are recommended tend to be less similar
than when requested for larger amounts of recommen-
dations.

Normalized Euclidean Distance Given Input Size
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Figure 4: Normalized Euclidean against the given num-
ber of songs in input playlist.



Normalized Euclidean Distance Given Output Size
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Figure 5: Normalized Euclidean against the number of
outputted song recommendations.

To visualize the cosine similarity metric, we utilized
box plots to understand the spread in relation to r
and s. In Figure 6, there is a leftward skew in the dis-
tribution of the cosine similarity metric and the num-
ber of songs in the input playlist. Similar to what
our bar chars for normalized Euclidean distance con-
veyed, this establishes further evidence for the num-
ber of input songs correspond to a strong similarity
score between the recommendations for each model.
With the box plot, the spread indicates more variabil-
ity with smaller s values implying that when the input
size of the playlist is small, the cosine similarity met-
ric can be smaller. In other words, the similarity of
the two models’ recommendations is smaller and the
output are relatively different than when s is large. In
Figure 7 there is a similar distribution. This indicates
that the number of requested recommendations cor-
relates to the similarity between the models’ outputs.
When r is small, the cosine similarity value tends to
vary but can be relatively small. This means that the
similarity between the recommendations (when the re-
quested recommendations is small) can be smaller. The
opposite is true when r is large.
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Figure 6: Cosine similarity against the number of songs
in input playlist.
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Figure 7: Cosine similarity against the number of out-
putted song recommendations.

From these visualizations, we were able to conclude
that similarity between outputs dramatically decreases
for both cosine similarity and Euclidean distance pri-
marily for instances when the input size (s) or the out-
put size (r) equal one. When s and r increase beyond
a value of one, there is only a very minimal effect of s
and r on output similarity.

5.3 Experimental Concerns

Discussion of this research must contain a commentary
on the potential experimental concerns that may have
had an impact on the results. It is possible that the
results were limited by the data used, the technology
available, and the research direction chosen. To further
examine these concerns, future research should expand
and work to lessen any potential impact.

The final song list used to build the models and
produce song recommendations only contained 8,516
unique songs, which is a small sample of the total
amount of songs available. It is possible that the high
similarity found between the model outputs is a prod-
uct of having a smaller sample size of songs to choose
from, and that dramatically increasing the size of the
song list would dramatically increase the complexity
of the data, thus reducing similarity. These concerns
notwithstanding, the similarity between the two model
outputs is still experimentally notable.

Our experiment found only a weak relationship be-
tween the input size (s), the output size (r), and the
similarity measures. This is likely due to the limited
number of simulations (121), a limitation caused by
limited processing power by the researchers’ available
technology. While this relationship was not identified
as overly impactful, the findings are still interesting to
highlight independently and to consider in future re-
search.

Lastly, our two unsupervised models were chosen based
on the specific needs of the experiment and not chosen
explicitly based on performance. To further expand
on this, the matrix factorization and K-Nearest Neigh-
bors models were chosen due to the tight time frame
and specific research needs (i.e., two working models
to compare with multiple input and output sizes). We



were able to implement them within the time and were
able to configure the outputs to what we needed, but
it’s possible that stronger models were passed over due
to being too difficult to implement quickly.

5.4 Future Work

This study was limited in terms of execution by the
contents of the data and the technology available to
the researchers in the given time frame. As such, future
work should seek to generally amend this by building
larger databases, exploring the relationships identified
here more deeply, and considering implementing new
technology to bolster the results.

A future development of this study could be a more in-
depth exploration of the effect of input playlist size and
output playlist size on the similarity between different
recommendation systems. To do this, we would ob-
tain larger processing power and run more simulations
allowing us to explore the relationships between these
parameters while expanding on the range of s and r.
A similar research direction to consider is expanding
upon the comparison aspect and building more com-
plex models to act as recommendation systems. Com-
paring these models would allow for a more in-depth
survey of the current technology and how they relate
to each other.

Another area to be explored is the relationship between
song attributes and the similarity of model recommen-
dations. Even though matrix factorization does not
use the attributes directly, it would be interesting to
explore if the method still obtains similar attributes
using user preferences. To do this, we could analyze
how certain attributes impact the similarities between
both models. A benefit to this area of research would
be additionally databases with more songs or exterior
validation of the song attributes by additional sources.

Introducing new technology could be useful for devel-
oping future research directions. Large-scale recom-
mendation systems often use neural networks combined
with techniques like matrix factorization to identify
patterns in each listener. Additionally, having access
to larger databases of songs, both attribute-wise and
user-interaction based, would be beneficial to the re-
producibility and potential impact of this work. This
experiment could additionally benefit from seeking out
qualitative data, such as seeking user feedback on rec-
ommendations from a random population of users.
This qualitative data could help researchers develop
a stronger hypothesis about the strength of their rec-
ommendation system.
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